PHYSICAL REVIEW E

VOLUME 51, NUMBER 1

JANUARY 1995

Saddle-splay elasticity of nematic structures confined to a cylindrical capillary

S. Kralj"? and S. Zumer?
'Faculty of Education, Department of Physics, University of Maribor, Koroska 160, 62000 Maribor, Slovenia
2Department of Physics, University of Ljubljana, Jadranska 19, 61000 Ljubljana, Slovenia
(Received 9 May 1994; revised manuscript received 12 August 1994)

The stability of nematic structures within a cylindrical capillary whose wall exhibits a homeotropic
boundary condition is studied. The structures are obtained numerically from Euler-Lagrange equations
resulting from the minimization of the Frank free energy functional. Stability diagrams are presented
showing dependence on elastic properties, surface anchoring, and external transversal field strength.
Emphasis is given to the effects of the saddle-splay elastic constant (K,,), which plays an important role
in the weak anchoring regime. A new structure—the planar polar structure with two line defects—is
predicted. It is shown that it is stable in a finite interval of the external field strength in the strong an-

choring regime.

PACS number(s): 61.30.Eb, 61.30.Jf, 64.70.Md

I. INTRODUCTION

Liquid crystals in restricted geometries have been the
subject of intense research for years. They exhibit a rich
variety of qualitatively different structures [1-3] whose
stability depends on competition among the bulk elastic,
surface, and external field forces. Transition among vari-
ous structures can be induced by (i) an external field (a
so-called Fréedericksz-like structural transition), (ii)
changing surface conditions (surface driven structural
transition), (iii) changing the shape and size of the cavity
(geometrically driven structural transition), and (iv) vary-
ing elastic properties, i.e., what is conventionally
achieved by temperature variation (temperature driven
structural transition).

These structures experience in general significantly
different electro-optic properties [4—11], which makes
them suitable for various electro-optic applications.
Study of confined liquid crystals is also interesting for
fundamental physics of finite size systems [12-16], sur-
faces [17], defects [18], etc. For instance, defects in liquid
crystals where orientational order is not uniquely defined
are related to defects in seemingly completely different
systems whose order parameter has similar symmetry
properties [18-22].

The nematic [23,24] phase is the simplest liquid crystal
phase. A nematic structure confined to a cavity is in
most cases well presented with the uniaxial director field
n(r) and the orientational order parameter S(r). The
unit vector field n(r) describes a local average orientation
of a long axis of the nematic molecule while S(r) mea-
sures the amount of fluctuations about n(r). Deviations
of S(r) from its value S, in the undistorted bulk phase
can be significant at a liquid crystal boundary and at a de-
fect site. They typically persist from the origin of a per-
turbation over a size given by the nematic coherence
length [24] £,. For conventional nematics even close to
the nematic-isotropic transition temperature 7Ty; the
coherence length does not much exceed =~10 nm. There-
fore in supramicrometer cavities the nematic structure is
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in most cases well described with the director field alone.

The nematic-substrate interfacial coupling [17] is the
most important factor determining ordering in curved
geometries. Its anisotropic part, which affects the direc-
tor orientation, is conventionally called the anchoring in-
teraction. The director orientation which locally mini-
mizes the anchoring free energy contribution is referred
to as the easy axis e,. The cases most often studied in-
volve homeotropic anchoring, where e, points along the
interface normal v, and planar anchoring, where e is
perpendicular to v.

A lot of studies have been devoted to liquid crystals
confined to the cylindrical environment [1,10,11,25-31].
Various structures have been reported for a given anchor-
ing condition. In the following we limit the consideration
to the case of homeotropic anchoring. The planar radial
[25] with a line defect (PR), the escaped radial [26,27]
(ER), and the escaped radial structure with point defects
[28] (ERPD) were first theoretically analyzed and ob-
served by optic studies. Cladis and Kleman [26] as well
as Meyer [27] showed that the PR structure is realized in
cylinders of relatively small radia (R <1 pum). For larger
radia they predict stability of the ER or ERPD director
field. Later studies using the deuterium NMR enabled
one to study nematic patterns in cylinders of submicrom-
eter radia [1,30,31]. These studies have revealed the ex-
istence of the planar polar [1] (PP) structure.

Let us first briefly describe the main characteristics of
these structures, which are shown in Fig. 1. In the PR
structure [Fig. 1(a)] the director field n(r) has only a ra-
dial component with a line defect of strength 1 [18] run-
ning along the cylinder axis. The line defect is topologi-
cally unstable. Namely, a liquid crystal can avoid this
singularity by escaping n(r) along the cylinder axis. This
is realized in the ER structure [Fig. 1(b)]. Due to surface
irregularities and intrinsic fluctuations near the nematic-
isotropic phase transition the ER structure is often re-
placed by a more energetic, metastable ERPD
configuration [Fig. 1(c)]. It consists of partially escaped
domains with alternating radial and hyperbolic point de-
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FIG. 1. Schematic representation of a director field of the (a)
planar radial (PR), (b) escaped radial (ER), (c) escaped radial
with point defects (ERPD), (d) planar polar (PP), and (e) planar
polar structure with two line defects (PPLD). Cases (a), (d), and
(e): the (e,,ey) plane; cases (b) and (c): the (e,,e,) plane.

fects frozen in. In these ‘“radial-like” structures the
director field n(r) is entirely confined to the (e, e,) plane
in the absence of an external field breaking the cylindrical
symmetry of the problem. Here (cp,eq,,ez) denote the
unit vectors of the cylindrical coordinate system.

In another <class of structures— “polar-like”
structures—the director field is restricted to the (ep,e‘p)
plane with a strong component in the e, direction. In the
PP structure [Fig. 1(c)] n(r) tends to be parallel at the
cylinder axis and radial at the cylinder wall. The analogy
between nematic structures in a cylindrical capillary and
spherical droplets [2,32] suggests the possible existence of
a planar polar structure with two line defects (PPLD),
shown in Fig. 1(e). This structure has two symmetrically
running line defects of strength 1 parallel to the cylinder
axis.

Recent studies [1,10,11,30,31] have shown that details
of these structures and transitions among them clearly re-
veal elastic and anchoring properties of nematics. Al-
lender and co-workers [1] determined the saddle splay
nematic elastic constant K,, using the deuterium NMR
from (i) details of the ERPD structure and from (ii) the
PP-ERPD coexistence point. Later Polak et al. [11]
measured K,, and the surface anchoring strength by
studying details of the ER structure with optic polariza-
tion microscopy. In addition, Sharkowski et al. [10] pro-
posed a new, relatively nondemanding method to mea-
sure the ratio of the bend to the splay nematic elastic
constant via interference textures of the ER structure.

In those studies the influence of the splay-bend elastic
constant K;; on nematic structures was neglected. The
reason for this is some still not completely resolved
mathematical difficulties that the K; term introduces.
Recent experimental and theoretical studies [33-36] of

nematic director profiles in thin nematic films indicate
that the value of K; is small compared to other elastic
constants.

An exact determination of elastic and surface proper-
ties of a nematic liquid crystal requires a knowledge of
the stability regions of different structures and the depen-
dence of structural details on elastic constants and the
surface anchoring condition. However, most of the re-
cent stability studies were restricted to an approximation
of equal Frank nematic elastic constants in the absence of
an external field. The surface elastic constants K,, and
K |3 were determined with a large uncertainty.

For this reason we decided to carry out a stability
study of nematic structures in cylindrical cavities show-
ing a dependence on elastic properties, homeotropic an-
choring strength, and transversal external field. Emphasis
is given to the dependence of stability regions on K,,.
The paper is organized as follows. In Sec. II the model
free energy and corresponding Euler-Lagrange equations
are presented. In Sec. III the dependence of structures
on model parameters is analyzed. In Secs. IV and V sta-
bility diagrams are presented in the absence and presence
of an external field, respectively. In the last section we
summarize results. A preliminary account of these re-
sults, where we focus on the similarity between nematic
structures in a cylindrical capillary and spherical droplet,
has already been presented [32].

II. MODEL

In order to study nematic structures confined to a
supramicrometer cylindrical capillary we use the Frank
[37,38] phenomenological approach. The length L of the
capillary is assumed to be much larger than its radius R.
Thus finite length L effects on a nematic structure can be
neglected. We restrict our study to cavities with a
supramicrometer radius deep in the nematic phase. This
enables us to neglect spatial variations of the nematic
orientational order parameter. Nematic structures are in
this case well described by the director field n(r) alone
[14]. The cavity wall is set to enforce the homeotropic
anchoring.

The corresponding free energy density [24,37-39] in
the nematic director field is

K K K
f(r)ZT”(divn)2+ %(n-curln)2+ —%(n)(curln)2

K .
——2—(n><cur1n+n divn)-v6(r—R)

+K13(n divn)‘vﬁ(r—R)
W,
+—2—°[1—(n-v)z]zS(r—R)—%(n-g)2 . )

The nematic elastic properties are described in the splay
(K1), twist (K,,), bend (K;3), splay-bend (K,;), and
saddle-splay (K,,) elastic constant. Note that different
definitions of K,, are in use. We adopt the definition [1]
—K,,/2(nXcurln+ndivn) used in recent publications
of Allender and co-workers. Other forms are
—K(nXcurln+ndivn)  (e.g., Ref. [36]) and
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—(K,4+Ky)(nXcurlnXndivn) (e.g., Ref. [40]). The
term with the constant W, [39] models the homeotropic
anchoring imposed by the lateral wall of the cylinder. A
short range character of the surface interaction is
modeled with the § function 8(r). The wall is located at
r=R and v is its normal. The last term in Eq. (1) de-
scribes the presence of an external magnetic or electric
field {=_e, of magnitude &, pointing along the unit vec-
tor e,. The quantity A measures the magnetic or electric
anisotropy of the liquid crystal. In this study we assume
A>0. As a consequence the external field tends to orient
n along e;.

Recently a lot of attention has been devoted to the
“surface” or, better, the recently designated [34] “diver-
gence” elastic K,; and K,, terms. These two terms can be
converted to surface integrals by the use of Gauss’s
theorem. Therefore, although the elastic constants K,
and K,, represent a fraction of the bulk free energy den-
sity they influence nematic structures only via boundary
conditions. In contrast to Frank elastic constants, which
are in leading order proportional to S?, the leading term
of surface elastic constants is proportional to S [40,41].
This is demonstrated in Appendix A. The K,, problem is
mathematically well posed. Theoretical [42] and recent
experimental studies [1,11] indicate that values of K,
and Frank elastic constants are comparable. However,
much more ambiguity is related to the K; contribution.
Its peculiarity is that it introduces [34] derivatives along
the surface normal direction. As a consequence, the
functional (1) is not bounded from below. There are
different suggestions on how to avoid this problem
[33-36,43]. Recent estimations [33,35,36] based on
different approaches suggest that K5 is smaller than the
Frank elastic constants. For the K; term as defined in
Eq. (1), they yield K,3=—0.2K; [36], —K;3<K /2
and —K|; <K;3/2 [33], and |K 3| =107 12N [35]. But al-
though K3 seems to be smaller than the remaining elas-
tic constants it can play an important role [34]. The K5
term can be negative (in contrast to Frank elastic terms)
and can cause spontaneous deformations. In this study
we disregard the K |3 contribution. We will return to this
J

problem in a future work.

It is convenient to express anchoring and external field
strength with corresponding typical lengths [24]
d =K, /Wyand E=VK,, /(E?A), respectively. The sur-
face coherence length d measures the competition be-
tween the nematic elastic and anchoring forces. The an-
choring influence on a director profile becomes significant
for R/d >1. The field correlation length £ measures
the competition between elastic forces and the external
field. The field influence becomes important if R /&> 1.

In calculations we use dimensionless cylindrical coordi-
nates x in units of the cylinder radius R. Unit vectors
along dimensionless coordinates p, @, z are denoted with
€, €, €, respectively. We introduce dimensionless
operators V-=R div, VX =R curl, and ratios u=R /d,
a;=K; /K, i ={22,33,24}.

Taking this into account the dimensionless free energy
density g (x)=f(r)/(K; /R?) is expressed as

g(x)=1[(V-n)*+a,(n-VXn)*+a;(nXVXn)?]

2V Xn+nVen)edp—1)
5 (n n+nV-n)-e,8(p

+E (1= (n-e,18(p—1)— gz(nef)z. 2)
In this study the external field is restricted to the (e,e
plane and points along e, =e, cosp —e, sing.

The minimization of the corresponding dimensionless
free energy G = f g(x)d®x yields the Euler-Lagrange
differential equations. We study only structures without
the twist deformation. This step is in accordance with ex-
perimental studies [1] in long cylinders subject to homeo-
tropic anchoring, which do not reveal structures with
pronounced twist deformation.

We use different parametrization for the escaped radial
and polar structures. In the case of a negligible external
field strength (R /£ <1) the director field of ER struc-
tures can be solely described by the angle 6(p,z):
n=—e,sinf+e, cosf. The corresponding bulk equilibri-

P
um equation is (discarding the external field term)

)

3%0 . ,0%6 a0 . .
2
e (@33 cos?0+sin%0)+ |p*— 3 +p— % (cos?0+a,; sin?0)—sin6 cosd
(a3 —1) 30 36 a0 3% 30 39
+—= " lsin(2 2| =L 2 |gi =7 il =0.
5 ‘sm( 0) |p % 2 | TPa a, sm(26)apaz +cos(26) % oz 0 (3a)

The boundary condition at p=1 is given by
%%(coszﬂ +a,; sin?0)+ ?)—Z sinf cosO(1—a;3)

+(1—p—a,,)sinBcos6=0 . (3b)

Note that for the escaped radial structures the K,, term
simply renormalizes the anchoring u (see Appendix B).

Thus the saddle-splay contribution for such cylindrical
symmetry does not introduce a qualitatively new ‘“‘an-
choring” source at the cylinder wall. It is to be stressed
that conventionally the K,, term enters the boundary
condition together with director derivatives [34]. The de-
tailed derivation of Eq. (3b) is given in Appendix B.

The remaining boundary conditions are 6(p=0)=0;
the ERPD  director field is enforced by
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0(p,z=0)=60(p,z=1=Ilpp)=m/2 and the ER director
field does not depend on the z coordinate. Here z =0 and
z=Ilpp=Lpp /R describe the position of two adjacent
planes with a planar radial director configuration of the

2 2
. 3 3¢ 3%
1— _¢_ 2__ —
( a33)lsm(2¢) 3 ]p 3¢ +1 2apa¢)p
d? Y
42 |28 0y
3’ "’

with the boundary condition at p=1:

%ﬁ—(a” cos’¢p+sin’e)

+sing cos¢ |(az3—1) %‘%-Fl +u|=0. (3d

In planar structures the K,, contribution is absent [1]
and therefore does not enter Eq. (3d). The equations are
solved numerically for different ratios of elastic constants,
values of the anchoring, and the external field strength
using the relaxation method [44].

The stability diagrams are obtained by comparing free
energies of different structures. To avoid singularities in
free energy density at defect sites the isotropic core sur-
rounding the defect is introduced [2]. The core radius is
approximately given by a nematic coherence length. We
test the adequacy of this approach in the case of the PR
structure. For this simple structure we evaluate the corre-
sponding free energy deep in the nematic phase taking
into account S(r) variation (Appendix C). Comparison
with a free energy value obtained via the approximation
of a constant order parameter shows a negligible
discrepancy (far below 1%, which is the accuracy of our
calculations).

III. STRUCTURES

Recent experimental studies [1] indicate that among
structures for the geometry and surface conditions de-
scribed the ER and PP structures are most often realized.
For this reason we first analyze the dependence of these
structures on elastic properties and anchoring strength.

A. Escaped radial structure

The escaped radial structure for different ratios a;; and
anchoring strengths has already been studied by Allender
and co-workers [1]. They have derived the analytic ex-
pression for the ER director field in the absence of an
external field. They have shown that its structure can be
presented alone by the surface parameter o0 =a,, +up—1
and the ratio a;;. In the following we present the main
features of the ER structure in order to understand sta-
bility diagrams that we intend to calculate.

2
(sin’p+a,;, cosz¢)+2§—%(a33 sin’¢+cos’p) — ‘%
¢

ERPD structure.

The polar structures are described by the angle ¢(p, ),
where n=e,cos¢+e,sing. The corresponding bulk
differential equation reads

—2cos2¢§£é£ ]

dp ayp
2
p’sin[2(¢+¢@)]=0, (3¢

The angle 6(p), the average orientational parameter
(P,) (see details in the last lines of this section), and
6(p=1) dependence on ¢ and a;; are plotted in Figs. 2
and 3, respectively. For large cylinder radia (R /d >>1)
the value of o is dominated by a relative anchoring
strength u=R /d. With decreased radius the a,, contri-
bution in o becomes important. Figures 3(a) and 3(b) re-
veal that the ER structure is (meta)stable only if o = 1 for
any aj; ratio. Below o =1 the ER director field continu-
ously transforms into the homogeneous structure. In this
configuration the director field is homogeneous, oriented
parallel to the e, direction [0(p)=0]. Above the thresh-
old o =1, with increased o, the ER structure continuous-
ly develops. For o >>1 the surface angle 8(p=1) asymp-
totically approaches its strong anchoring limit 7 /2.

The ER director field qualitative response to the a;;
variation depends on the anchoring regime. If o is small
enough (the weak anchoring regime), the director struc-
ture mostly adapts to an a;; variation by changing
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FIG. 2. ER director field as a function of p for different ra-
tios of elastic constants. Dotted line: p+K,,/K;;=2.1; full
line: u+K,,/K,; =12.
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FIG. 3. ER structure dependence on o=pu+K,,/K;;—1
and K3 /K, represented by (a) (P,)={(3n-e2—1)/2 and (b)
director field orientation 6(p=1) at the wall of the cylinder.

6(p=1), which is evident from Fig. 2. The qualitative
course of 6(p) is preserved. Increased a;; decreases the
6(p=1) value and this reduces the average bend deforma-
tion. In the strong anchoring regime (o > 20) the surface
anchoring interaction fixes 8(p=1) to 7 /2. In this case
the ER structure reduces its deformational free energy by
shifting the region of strongest bend deformation towards
the center of the cylinder with increased a;;. In Fig. 3(a)
the variation of the ER structure as a function of a3; and
o is represented via the average orientation parameter
(P,)=(3n-N%z1) /2 dependence. Here (...) stands
for the average over the cylinder volume and Ngg points
along the average director field orientation; thus
Ngr=e,. This quantity can be, e.g., directly experimen-
tally determined by the deuterium [1,30] or proton NMR
in small cavities (R <1 pm), or indirectly by the optic po-
larization experiment [10,11] in large cavities (R > 1 um).

B. Planar polar structure

In the PP structure, schematically presented in Fig.
1(d), the strongest elastic deformations are localized near
diametrically lying points at the cylinder surface. With
increased anchoring strength these regions tend to devel-
op into line defects of strength [23] 1 in order to reduce
the surface free energy contribution. This is evident from
the inset of Fig. 4. The PP director field does not depend
on a,. Namely, for planar structures [1]
div(n-divn+mn Xcurln)=0. Therefore in the absence of
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FIG. 4. Average director field variation of the PP structure,
represented by (P,)={(3n-N23,—1)/2, with pu and
a;3;=K3;/K ;. The unit vector Npp points along the average
director field orientation. In the inset the director field of the
PP structure for (a) u=1, a;3;=0.5; (b) pu=1, a33=2; (c) pu=10,
a;3=0.5; (d) =10, a;3=2; (&) u=o0, a;3=0.5; (f) u= oo,
a3 =2 are shown.

an external field its structure is determined by a;; and pu
values alone.

Dependence of (P, ) of the PP structure on a3; and pu
is shown in Fig. 4. In the weak anchoring regime in-
creased a;; reduces average departures of the director
field from the homogeneous structure. As a consequence
(P,) is increased with a;; for u<10. This reduces the
bulk elastic free energy at the expense of the cheap sur-
face anchoring penalty. If the anchoring strength is con-
siderable (u>15) the surface anchoring does not allow
significant deviation of the surface nematic director field
from the normal (easy) direction. The major structural
changes with the increased a;; ratio are therefore real-
ized in the cylinder interior.

C. Free energy dependence on elastic
and anchoring properties

The resulting free energies F, of structures
[s =(PP,ER)] are plotted in Fig. 5 as a function of
p=R /d for different ratios of elastic constants. As al-
ready discussed, the free energy Fpp at the PP structure
does not depend on a,,. A large positive value of a,, sta-
bilizes the ER structure with respect to the PP director
field. For a given a,, value the Fpg =Fgg (1) dependence
is plotted above u=pgr =2—a,,, corresponding to o =1.
Below pgg the ER structure transforms into the homo-
geneous structure (Sec. IIIA). Above u~ 10 the ER free
energy only slightly changes (for typical a;; values), with
p indicating that the strong anchoring condition is al-
ready well established. The free energies of the PP and
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FIG. 5. Free energy dependence of the PP (dashed line), ER
(full line), and homogeneous structure (dotted line) on u,
a3;;=Ks33 /Ky, and a,,=K,,/K ;. Lines denoted with letters
(a), (b), (c) correspond to the cases a;;=1.5, a3; =1, and
a3 =0.5, respectively.

ER structure are strongly a;; dependent because both
configurations contain a considerable amount of bend de-
formation.

IV. STABILITY DIAGRAM IN THE ABSENCE
OF AN EXTERNAL FIELD

In the stability study we consider only the case K,, > 0.
Theoretically [42] K,, <0 is also allowed. But to our
knowledge all recent experiments suggest that K,, is pos-
itive [1,11]. In the weak anchoring regime negative K,,
could cause o <0. But this regime is rather ‘‘boring”
since already below o =1 the ER structure is replaced by
a homogeneous one.

The stability diagram of the PP and ER structure in
the (u,a;;) plane in the absence of an external field for
different a,, values is presented in Fig. 6. The stability
regions of the structures are separated by the coexistence
line py=pylas;). The topology of the ER structure allows
a perfect match of the homeotropic boundary condition
for large u values. Therefore for the chosen values of ma-
terial parameters the ER structure is stable for u > u, and
the PP structure for u = pu,,.

Qualitative characteristics of the stability diagram de-
pend on the a,, value.

(i) If a,4 <1 the transition between the two competing
structures occurs in the regime where the anchoring
strength is considerable (i > 10). The as; ratio has a rel-
atively weak influence on the director field at the cylinder
surface. Therefore the bend contribution to the deforma-
tion free energy in the PP structure is larger than in the
ER one. As a consequence, with increased a;; a coex-
istence relative anchoring strength p, is decreased. But

50
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5 17 19
K33/ Ky

20 PP

0 1 1 1 1 1 1 1 1
05 15 25 35 45

K33/K1t

FIG. 6. Stability diagram of the ER and PP structures in the
(u=R/d,Ks3;/K ;) plane in the absence of an external field. In
the inset (a) the stability diagram as a function of u and
K, /K, is shown for K33 /K ;=1 and K,, /K ; = 2. The regime
of very large K;;/K,, values, where the PR structure can be
stable, is demonstrated in the inset (b) for K,, /K, =1.

for a;; >>1 the K;; influence is strong enough to change
the director orientation at the cylinder surface, particu-
larly that of the PP structure. This reduces the bend con-
tribution of the free energy of PP more than that of the
ER structure. As a consequence, L, is slightly increased
with increased a ;.

(i) If a,4 > 1 the transition takes place for all a;; values
in the weak anchoring regime. Enabling apparent
changes of the director field at the cylinder wall causes p
to increase with increased a;; as already discussed above.
If a3 is small enough and a,, > 1.5 the ER structure can
even be stable for all u values.

(iii) For a,,>2 the stability diagram is qualitatively
different. Since these values of a,, are most probably not
realized, only the case of aj;;=1 is studied. The corre-
sponding stability diagram is presented in the inset (a) of
Fig. 6. We see that an additional stability region of the
ER structure appears, extending from p=0 to p,, desig-
nating the lower lying p,=pu(as;) branch. This is due to
the existence of the ER structure until =0 for a,, >2.
At u=0 the condition Fpp=0> Fpy is true because of
the strong a,4 contribution in Fgi. With increased rela-
tive anchoring strength p the ER structure experiences
more pronounced changes than the PP director field. As
a consequence the PP structure becomes stable at u=py,.
At still higher u values the ER structure is reentered at
o due to the smaller surface free energy contribution.
For a,, >a$, [a$4(a33=1)=2.18] the u, and p branches
meet, resulting in the stability of the ER structure for all
anchoring strengths.

Near the nematic—smectic- A4 transition the bend elas-
tic constant K5, is anomalously increased due to the pre-
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transitional effects [23]. In this case the PR structure can
be stabilized because its director field has only splay de-
formation. This is demonstrated in the inset (b) of Fig. 6.
Because of the presence of the line defect in the PR struc-
ture, the stability diagram no longer depends on R only
via the ratio R /d. With increased R a stability region of
the PR structure is reduced. This happens because the
core size surrounding the defects and its contribution to
the free energy are almost independent [2] of R. With in-
creased R a relative fraction of the defect-core region is
reduced. A relative volume with strongly established
nematic order is enhanced, increasing the elastic free en-
ergy contribution.

The stability diagram shown in Fig. 6 suggests how the
ER-PP transition can be used for the K,, determination.
Particularly convenient is the a;;>1 regime assuming
a,,€[0,2]. Coexistence lines py=py(as3) lie in the re-
gime, where (i) both structures studied strongly depend
on pu, and (ii) the coexistence relative anchoring strength
uy weakly depends on aj;. The amount of structural
changes is clearly visible from (P,)=(3n-N2—1)/2
dependence, shown in Figs. 3(a) and 4. Here N, stands
for the average director field of the planar polar (s =PP)
and escaped radial structure (s =ER). A (P,) value of
the ER and PP structure at the coexistence point can re-
veal a,, and p values. A possible way of extracting K,,
from (P,) data is presented in detail in Refs. [2,45].
Since for a;;>1 the coexistence relative anchoring
strength p, only weakly depends on a;;, the most con-
venient way of finding p, is by changing the cylinder ra-
dius or weakening the anchoring strength at constant
temperature. This has already been done by Allender and
co-workers [1] using the deuterium NMR experiment in
which they estimated a K,, value for the first time. It
should be mentioned that details of the ER structure in
its range of stability also reveal relatively well a K,, mag-
nitude if ratios a;; and p are known. Polak et al. [11]
took advantage of this fact and obtained estimations of
K,, in supramicrometer cylinders using an optic polar-
ization experiment.

V. STABILITY DIAGRAM IN THE PRESENCE
OF AN EXTERNAL FIELD

In the following the external field {={_e is introduced
in the (e,e,) plane. The external field forces the average
director field of the PP structure to point along e,;. In
calculations only the external field induced distortions of
the PP structure are taken into account. To study this
effect in the ER structure another angle in addition to
6(p) has to be introduced to describe n because of the
broken cylindrical symmetry. To avoid this technical
complication we estimate n distortions in the planar PR
structure. This structure is topologically equivalent to
the ER structure. The analyses show that the free energy
changes (~1% deviation) due to the PR director field
distortions induced by & are negligible in the regime,
where ER structure is stable. Note that in this regime
the PR director field in general apparently deviates from
“pure” radial distribution. But the reduction of the exter-

nal field free energy contribution is accompanied by a
comparable increase in the elastic free energy component.
This suggests that the approximation used is reasonable,
at least in the regime of stronger anchoring (x> 10).

A. Weak anchoring regime

The resulting stability diagram in the weak anchoring
regime dependent on the elastic properties, external field,
and anchoring strength is shown in Fig. 7. The stability
regions of the ER and PP structure are separated by the

(a)
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PP =planar polar structure
ER =escaped radial structure
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FIG. 7. Stability diagram of the PP and ER structures as a
function of dimensionless quantities u=R /d and d /£ for (a)
different ratios of K33/K;; K,4/K; =1; (b) different ratios of
Ky /K15 K33 /K =1,
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coexistence line (d /&), =(d /§).(u). The escaped radial
structure is stable in the d /£ <(d /), region. Since the
average director field of the planar polar structure is
closer to the external field direction than that of the ER
structure, the increased external field strength prefers the
PP director pattern. The stability diagram is qualitatively
the same for all a;; values assuming a,4 <2. With in-
creased a;; the ER domain is increased because the ER
structure has in almost all cases (see Sec. IV) relatively
less of a bend contribution compared to the PP director
field. The (d /&), line has two characteristic points: the
inversion point {(d/£);,u;}, where the line (d/€),
reaches maximum, and the zero field coexistence point
{0,110}, where (d /&), equals zero.

B. Strong anchoring regime

1. Stability of planar structures with respect
to the ER structure

With increased anchoring strength the areas of highly
deformed PP structure tend to develop into two surface
line defects of strength S; =1 [46]. Let us call the result-
ing structure the planar polar structure with surface line
defects (PPSLD’s). The topology of the problem allows
us to push these line defects away from the surface to-
ward the center of the cylinder. Consequently the
strength of both defects is reduced [46] to S, =1. We
name this structure the planar polar structure with line
defects. In the limiting case the two line defects meet at
the cylinder axis merging into a single defect of strength
S;=1, forming the planar radial structure. In turn the
S,;=1 defect of the PR structure can continuously escape
along the cylinder axis, forming the ER structure with a
nonsingular core. Therefore the PPSLD, PPLD, PR, and
ER structures are topologically equivalent [20] and can

be continuously transformed into each other by changing
relevant parameters.

Before taking into account all of these structures in our
stability study we first briefly analyze the influence of the
defect strength S,; on the distortion free energy. Investi-
gations of defects in a thin nematic film [23] show that a
defect contribution to the elastic free energy is propor-
tional to S2. If a defect is moved to the surface it occu-
pies only half of its volume in the bulk, but its strength is
doubled. The latter assumption is valid in the strong an-
choring case. In this respect the PPLD with two defects
of strength S;=1 is energetically advantageous with
respect to the PR and PPSLD director field. But these are
only rough estimations neglecting a finite anchoring and
external field effects.

The numerically obtained stability diagram, taking into
account the ER, PR, PP, PPLD, and PPSLD director
fields, is shown in Fig. 8. We see that among structures
with line defects only the PPLD structure can be stable in
the regime of chosen elastic properties. The PPLD direc-
tor field has a lower surface free energy contribution than
the PP structure and a lower external field contribution
than the ER structure. This property makes it stable in
an interval of the external field strength in the strong an-
choring regime. The coexistence lines between ER-
PPLD and PPLD-PP structures meet at the triple point
((d /&)y ). At the ER-PPLD coexistence line the R /€
ratio is constant. This is the consequence of the depen-
dence of ER and PPLD structures only on R /£ in the
strong anchoring regime for a fixed set of nematic elastic
constants [see Egs. (3)].

The existence of the PPLD structure breaks the scaling
property of the (d /&,u) stability diagram. The presence
of line defects, as already discussed in the case of the PR
structure, introduces a dependence on the cylinder ra-
dius.

x/R PPLD

160 N y
\ /
i \\ \ PPLD /
o \\\ /./
0120 - \
3
80
L0
- ER
0 | | | |
0 002 004

FIG. 8. Stability diagram of the planar polar (PP), planar polar structure with two line defects (PPLD), and escaped radial struc-
ture (ER) as functions of dimensionless quantities u=R /d and d /£ for R =1 pum (full and dashed lines) and R =2 pm (full and
dash-dotted lines). In the inset the dependence of the line-defects separation of the PPLD structures on the external field strength is
shown.
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The relative separation x of line defects in the PPLD
structure depends on the external field strength, which is
demonstrated in the inset of Fig. 8. Note that only in a
part of the plot shown is the PPLD director stable. For
d/E=0 and a;;=1 the line-defect separation is
2x ~0.6R. The anomalous increase in x with increased
external field strength indicates that at R /& ~2 the exter-
nal field influence on x becomes prevailing.

2. Stability of planar structures with respect
to the ERPD structure

Until now we have compared the planar structures
with the defectless ER director pattern. In practice such
a structure can be realized only in long and large
. cylinders (R >>1um, L /R >>1) where the roughness of
the surface and effects of the cylinder ends have a negligi-
ble influence on n. In other cases point defects are usual-
ly incorporated into the ER director field. In long nar-
row cylinders a metastable ERPD structure is observed
[29,30]. The average distance Lpp among point defects of
cylinders of R =0.2-0.3 um is estimated [30] to be be-
tween 2R and 3R. A section of this structure between two
adjacent planar planes can even be stable in a cylinder of
finite length L in which the lateral wall enforces homeo-
tropic, and the other two limiting surfaces strong isotro-
pic, tangential anchoring. Reminiscent structures have
been studied by Liang and Chen [7].

In the following we study a stability diagram where the
ER structure is replaced by the ERPD one (or
equivalently by the ERPD section in a finite cylinder).
We limit our study to the cases of Lpp/R =2 and
Lpp /R =3. The resulting stability diagram is presented
in Fig. 9. The cases of ER and ERPD with Lpp /R =2

%3 04 d/E

FIG. 9. Stability diagram of the planar polar structure (PP),
planar polar structure with two line defects (PPLD), escaped ra-
dial (ER) structure, and escaped radial structure with point de-
fects (ERPD) for Lpp /R =2 and Lpp /R =3 as functions of di-
mensionless quantities u=R /d and d /£. The full line separate
the stability regions of ER, PP, and PPLD structures. The
dash-dotted and full line right from the triple point T, separates
the regions of the PP, PPLD, and ERPD structure with
Lpp /R =3. The dashed and full lines right from the triple
point T; separate the regions of the PP, PPLD, and ERPD
structure with Lpp /R =2.

and Lpp /R =3 are superimposed for a,,=1. The re-
placement of the ER structure does not affect qualitative
features of the stability diagram. The main quantitative
changes are the following.

(i) Since the ERPD structure is more energetic than the
ER one, the zero field coexistence point p is shifted to-
ward higher values. The coexistence line (d /&), is also
pushed toward higher values. This is due to planar radial
domain walls in the ERPD structure that have a lower
external field free energy contribution with respect to the
uniformly escaped structure.

(ii) The ERPD structure with larger Lpp has lower p,
because Fgrpp With increased Lpp decreases [29]. This is
true in the repelling regime of point defects, where Lpp, is
larger than the critical separation L. With increasing
Lpp, the ratio (d /&), decreases because a relative number
of planes with the planar radial structure is reduced.

3. Existence of the PPLD structure in the absence
of an external field

In thermotropic uniaxial nematics the PPLD structure
has not yet been observed. But a reminiscent structure
has been recently observed in a biaxial micellar nematic
liquid crystal using optical polarization microscopy by
Liu and Saupe [47]. They investigated textures and de-
fects in capillaries of micellar nematics. They show that
biaxial micellar nematics have two line defects of strength
4 running parallel to the capillary axis in a helical
fashion. This structure is stable in the absence of an
external field. The distance between line defects is es-
timated to be % of the capillary diameter.

Guided by this experiment we also have tried to stabi-
lize the PPLD structure of our uniaxial model in the ab-
sence of an external field §. For this reason we replaced
the ER structure with the more energetic ERPD one. But
for reasonable values of parameters the qualitative
features of the ER-PPLD-PP stability diagram are
preserved. Actually, we find that the PPLD structure
could be stabilized at {=0 for relatively low values of
a,4, R, and the separation Lpp, between line defects. We
achieved this, e.g., for a set of values a,, =0, Lpp =2R,
R =1 pm. There are also other combinations, but for a
reasonable choice of R and Lpp it is necessary that
a,,~0. This contradicts recent experimental estima-
tions, which suggest [1,11] a@,4 > 1.

We therefore suspect that the biaxiality is important
for the stability of the PPLD-like structure observed by
Liu and Saupe. We expected that among different effects
related to biaxiality the K,, term is crucial. The free en-
ergy of the uniaxial PPLD structure is namely not
affected by the saddle-splay elastic constant; the K,, con-
tribution of the cylinder wall is canceled by the K,, con-
tribution of the nematic-isotropic interface surrounding
the line defects. Our intuitive expectation was that re-
placing the isotropic core with a biaxial one would have
removed the canceling effect. That would cause a similar
K,, dependence of the PPLD and radial-like structures.
As a consequence the PPLD director structure could be
stabilized for =0 for an optional K,, value. But in Ap-
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pendix D we show that also in the biaxial case in planar
structures the K,, contribution is irrelevant. Thus the
twist character of the experimentally observed structure
is presumably the relevant stabilizing parameter.

C. Hysteresis

In stability diagrams shown (Figs. 6-9) the stability re-
gions of structures are separated by coexistence lines for
which the condition FS1 =F s, applies. Here S, S, sym-

bolize the competing structures and Fy is the correspond-
ing free energy. However, most of the transitions studied
are discontinuous and the states S| and S, are separated
by an energy barrier AF. The system can surmount AF in
a fluctuating manner. Thus the condition for the actual
transitions .S; —S, is in general more demanding [6]; it
requires Fg 2F s, and in addition AF =AF_,,. Here

AF,_,, describes the maximal energy barrier height,
which can be overcome by fluctuations. Therefore an ex-
perimentally determined stability diagram could substan-
tially differ from those shown in this work.

In order to estimate this we roughly estimate (i) the en-
ergy barrier AF between the ER and PP structures and
(ii) the shift of the critical external field due to hysteresis
phenomena in the case when the external field is continu-
ously increased from zero.

To estimate the upper bound of AF we replace a
discontinuous direct transition ER—PP by a continuous
evolution: ER—PR—PPLD—PP. In this scenario the
z component of the ER director field is continuously
pushed toward zero until it transforms into the PR struc-
ture. The line defect of strength S; =1 then splits into
two line defects of S; =3 which are pushed toward the
cylinder wall. At the surface the discontinuity of n is re-
laxed if anchoring is not too strong. Let us assume that
in this transformation the PR structure is most energetic
(see the discussion in Sec. VB 1). Therefore the energy
barrier of the transformation is AF~Fpg —Fgg. In the

absence of external field, equal elastic constants
K=K, =Kj3; and for u>>1 we get
AF~7KL[In(R /p.)—(3—ay,)] . (4)

Here p, describes the core radius of the isotropic fluid
surrounding the line defects of the PR structure (see Ap-
pendix C). For R =1 um, a,,=1, and for a typical liquid
crystal we get p, =5 nm, AF/(KL)~=~10.4. We see that
the energy barrier logarithmically increases with R. Thus
the hysteresis effects are more pronounced in large
cylinders.

We now estimate the maximal shift of the (R /£),
value, where the ER — PP transformation occurs, due to
hysteresis effects. The ratio R /£ is a convenient com-
bination because for constant elastic properties and in the
strong anchoring regime the director field depends only
on R /¢ [see Eq. (2)].

In the approximation of equal elastic constants, assum-
ing u>>1, we roughly express free energies of the ER,
PP, and ER as [1]

Fypp ~7KL 3_(,24_(_‘_1:1222_) R 50
2 §
2
Fo kL | [ R |- L|R (5b)
o pe | 4 &) |”
1 [R)
~nKL |In [& |+1—— [=

In this approximation the ER-PP coexistence value
(R/E)., is__ defined by  Fgg=Fpp, yielding
(R/E), =~V [In(u/4)—2+a,,]/0.3. For u=50, ay, =1,
we get (R /&,.~2.3, which is roughly in accordance with
more detailed numerical calculation. We estimate the
maximal shift of (R /&), =(R /&) nax With increased field
by putting Fgg = Fpg, i.e., AF =0 and Fpp << Fgy. This
is the latest stage when the ER structure overcomes the
energy barrier before transforming into the PP structure.
In this case even infinitesimally small fluctuations cause
transformation _into _the PP director field. We get
(R/E)emax=V [In(R /p.)—3+a,,]/0.5. For R=1 pum,
pe=5 nm, a=1, this estimation yields
(R/E)cmax=~8>>(R/x),. Note that the latter approxi-
mation is very rough. In such high fields the PR struc-
ture is strongly deformed. It adopts a domainlike struc-
ture in which two halves of almost uniformly aligned n
along the external field direction are separated by a
strongly deformed band of thickness =~2&. In this struc-
ture the external field free energy contribution is mini-
mized at the expense of strongly localized elastic distor-
tions. Similar phenomena have been studied in detail in
Ref. [6] in spherical droplets.

Our estimations suggest that hysteresis effects are im-
portant, particularly in large cylinders. Therefore in an
experiment both directions of a critical parameter caus-
ing structural transition should be checked.

VI. CONCLUSIONS

We have numerically studied the stability of different
nematic director structures in a long cylindrical capillary
subjected to homeotropic anchoring. We use the Frank
phenomenological approach in the representation of the
uniaxial nematic director field. We construct stability dia-
grams of the ER, ERPD, PR, PP, and PPLD director
fields dependent on (i) ratios of elastic constants K33 /K5,
K,,/K,;, (ii) the anchoring strength, and (iii) the
transversal external field. The K,; contribution is dis-
carded in this work. We show which sections of stability
diagrams are most adequate for the experimental deter-
mination of the saddle-splay elastic constant. In addition,
we demonstrate that in a finite interval of an external
field strength in the strong anchoring regime the planar
polar structure with two line defects can be stable. This
structure has not been observed yet in thermotropic
liquid crystals. )

Note added. After finishing the paper we received the
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article [48] in which Faetti proposes an alternative
mathematical treatment of the K; term consistent with
Barbero-Oldano [43] K;; theory. According to his ap-
proach, K;; can in some cases apparently influence
nematic structures confined to a cylindrical environment.
In particular, it can induce surface structural transition.
In a future paper we are going to study structures in a cy-
lindrical cavity with emphasis on the K, elastic constant
and compare the consequences of contradicting Faetti’s
[48] and Pergamenshchik’s [34] K ;3 approaches.

fon=LMQ,; ;+L»Q ,Q;, +L¥Q;

ij,ij ij,i

APPENDIX A: RELATIONS BETWEEN
NEMATIC ELASTIC CONSTANTS

In this appendix we express the temperature dependent
elastic constants K; (i €[11,22,33,24,13]) with tempera-
ture independent Landau expansion coefficients L/ (i
and j are positive integers). We start with a general
Landau-de Gennes type expansion [2,40,49,50] of the
elastic free energy density f,(r) in terms of a tensor
nematic order parameter Q;;:

Qk]k_*_L Q]kIQlk]

+LPQu ;i Qi +LE Q5 Qi L Q;;Qy x Qe + L Q;; Q. Qe

+LQ,;Qu Qi LY Q; Qi 1 Qr s + L Q;;Qu 1 Qe + L' Q;Qu Qe+ -7 s

where L7 are temperature independent elastic constants.
In the case of a uniaxial nematic phase Q;; can be ex-
pressed as [49]

Q=S (3nm,—5,) . (A2)

17 2
Here n; denotes the ith director field component and S is
the uniaxial orientational order parameter. In the case of
a constant value of S the expression (A1) transforms to

11

K
fe(r)zT(divn

K K
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K .
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+K;(ndivn)-v8(r—R) . (A3)

(A1)
[
20 =3SLV+="— 95 QLP+LYP —1LP —2L)
3
+2§—(L‘43’+2L‘53>—L‘63’) , (A3d)
K;;=3SLM+ 3§ LP . (A3e)

APPENDIX B: DERIVATION
OF THE SURFACE BOUNDARY CONDITION

In the following we derive Eq. (3b), which determines
the surface boundary condition for the escaped radial

The elastic constants in Eqgs. (A1) and (A3) are related via structures. We originate frorp dimensionless free energy
given in Eq. (2). Using the parametrization
K 952 (2L(2’+L 2)+L(3’ L@ —op ) n(p,z)= —e,sinf+e, cosf the dimensionless free energy
= 2 5 6 G per unit cylinder length is
+283(~LP +2L P +LP +2L P L),
27 1 1 26 a6
G=5~
(A3a) 1 lfopdpfonge *3p’ 3z
3
Ky =9S%L®—LY )+%Liﬁ) , (A3b)
1 a0
2 + | dz|gy |0,— |+g,(0) . (B1)
Ksﬁ%(zvf) +LP+LP —-LP —2LY) fo oz R
3
2§——(2L(23’—L(33’ +LP —LP+2LP)), Here | =Lpp/R for ERPD and /=L /R for the ER
structure. The elastic (g,), “surface” elastic (g,4), and
(A3c) anchoring (g, ) contribution are expressed as
J
g.= ; gz (cos29+a33 sin%@)+ 96 (sin29+a33 cos?0)
. 2
+% sin(20) +ﬁ 2sin“6 n sin’0 +(1—as;)sin(20) 2990 30036 (Bla)
P p iz p p? dpoz
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@y | sin%0 |, 36
= —— + —_ R
R (B1b)
g =L cos’0 . (Blc)

We see that g,, depends also on 36/9z. This derivative is zero in the ER structure where 6=6(p). Note that g,, has a

particularly simple structure because of the cylindrical symmetry [the surface normal in Eq. (1) is along e,]. In the fol-
lowing we will see that for such a case d6/0z does not enter the surface Euler-Lagrange equation describing the condi-

tion at p=1.
We carry out the variational procedure

1 1 ae age a0
27 /1)= — 50+ ———8 | 2~
8G/(2n/1)= [ pdp [ dz |86+ patd P
°la
) 3
+[laz | e 2 5|09y
0 36 N oz
3z
1 1, |98 19 og.
_fopdpfo 90  pd, 30
3p
1 0824 a 9824 98,
1% %6 "% 201 | o8
3z

In Eq. (B2) the first term determines the bulk Euler-
Lagrange equation and the second term the surface equa-
tion at the lateral wall (p=1) of the cylinder. The
remaining terms, not written in Eq. (B2), describe bound-
ary conditions at other nematic phase boundaries. In nu-
merical calculations we enforce the ERPD director field
by setting the planar radial structure at z =0,1 and the
ER director field is homogeneous in the z direction.
Thus the surface equation at p=1 is

9 R} og, g,
_8;24___8_ _Lg_L +_g_+L=0. (B3)

a6 oz 36 a0 96

= 9 |—

oz op

Taking into account Egs. (B1) we derive Eq. (3b). Al-
though in the ERPD structure 98 /9z70, we see that this
derivative does not enter Eq. (3b). It is important to
mention that in the general case the tangential (with
respect to the surface normal) derivatives are present in
the K,, free energy contribution and do not cause any
mathematical problems. In contrast the normal deriva-
tives, which are present only in the K ; contribution, in-
troduce mathematical difficulties. There are currently
two controversial theories [34,43] dealing with this prob-
lem.
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APPENDIX C: FREE ENERGY OF THE PR
STRUCTURE TAKING INTO ACCOUNT
THE S (r) VARIATION

In order to evaluate the free energy of the PR structure
allowing a S(r) variation we express the free energy den-
sity as [12,49]

_A(T-T,) C

2 B3, Caa
f(r) > S 3S + 4S
2
+5—ZS—[(divn)2+(curln)2]
K 2
+?(gradS) —WS6(r—R) . (CDh
Here A,T,,B, C are material constants, K =K,

=K,,=K,;, W represents the surface wetting strength
[12], and T is temperature. For the sake of simplicity we
have discarded a K ;3 and K, term in Eq. (C1).

In the PR structure the director field is given by
n(r)=e,, yielding

_ 282 bS® ¢, S*
g(p)=f/(K/RN)="8*—=—+7S +2p2
2
11ds
6 |dp

—gS8(p—1) . (C2)
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In Eq. (C2) we have introduced the dimensionless param-
eters a=A(T—T,)R?*/K, b=BR?/K, ¢=CR?/K,
q =WR /K. The minimization of g(p) yields the bulk
Euler-Lagrange equation

2
a5 145 _ 3 s psitesH—-S =0,  (Ca)
dp* pdp p p
with boundary conditions
ds
— |(p=1)=3q , S(p=0)=0. (C3b)
dp (p=1)=3q (p=0)

We solve Eqgs. (C3) numerically and from the obtained
S (p) dependence evaluate the dimensionless free energy
per unit cylinder length

1
G=f0g[s(p)]pdp. (C4)

In calculations performed in this article we assume a con-
stant value of S =S, where S, describes the bulk nemat-
ic orientational order parameter. To avoid singularities
at defect sites in this approximation we have introduced
an isotropic core surrounding the defect. The core radius
p. is approximately obtained from the condition [2]
aS;/2—bS}/3+cSE/4+S2E/(2p?)=0, yielding

bs, sz ||
a b b
= —_— —_—— —— 5
Pc 2 3 + 4 (C a)
Here
S,=(b+V'b2—4ac )/(2c) (C5b)

minimizes the homogeneous part of g(p). Taking this
into account we get for the PR director field

a b c
ES,,Z— —?TS;’"F ZSI‘;_sz In(p,.)

1 1
G= fp g(p)pdp~5
(C6)

For supramicrometer droplets a difference between a
value of G evaluated from Egs. (C6) and (C4) is, for typi-
cal values of nematic liquid crystal material constants,
negligible (below 1%).

9
Qij,inj,k = 2

21, |’
S, -3
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APPENDIX D: SADDLE-SPLAY CONTRIBUTION
IN A BIAXTAL NEMATIC PHASE

Our aim is to show that the saddle-splay elastic con-
stant does not influence planar (two dimensional) nematic
director structures. In planar structures nematic mole-
cules are restricted to lie in one plane. We originate from
the Landau—de Gennes free energy expression in terms of
the tensor nematic order parameter [49] Q(r):

f(r)=%L1Q(r),-j,kQ(r),~j,k . (D1)

The quantity L; denotes the temperature independent
nematic elastic constant. This model is for a uniaxial
nematic liquid crystal and spatially independent nematic
order parameter S equivalent to the Frank free energy ex-
pression in the approximation of equal Frank nematic
elastic constants. Indices i, j,k in Eq. (D1) denote tensor
components in the Cartesian coordinate system
(x1,%3,%3), Qy;,=0Q;;/3x;, and the summation over
the repeated indices is assumed. The nematic order pa-
rameter tensor field Q(r) can be expressed as [50]

_ S(r)
Qij_ 2

+T(0)[[,(0)(r)—m;(r)m;(r)] .

[3n,-(r)nj(r)-—8,-j]

(D2)

Here 8,; stands for the Kronecker tensor. Orthogonal
unit vectors (directors) n(r), m(r), I(r) define the local
coordinate system within which Q(r) is diagonal. The
quantities S(r), T(r) are the uniaxial and biaxial scalar
nematic order parameters, respectively. In large
cylinders (R >1 um) one can to a good approximation
neglect spatial variations of scalar order parameters.
Therefore we set S (r)=S,, T(r)=T,, where the index b
denotes a spatially independent bulk order parameter
value. With this in mind and taking into account
I=mXn, m;m; , =n;n; ; =n,m;=0, it follows that

2

_ 9 sz 2
Qij,koij,k_z Sp= 3 | MikMix+8Tpmym; . .
Next we recall the equality [49] (D3)
a;;a;;=(V-a)*+(a-VXa)’+(aXVXa)?
—V-(aV-a+aXVa), (D4)

where a is an arbitrary unit director field. Taking this
into account we get

2
2T, 2 2 2 2 2 2 2
S,,—T [((V-n)*+(n-VXn)*+(nXVXn)*]+8T;[(V-m)*+(m-VXm)?>+(mX VXm)?]

(D5)

The last two terms in Eq. (D5) present the saddle-splay contribution to the elastic free energy. But if any unit vector

field a is restricted to a plane [1] it holds,
V-(aV-a+aXVa)=0.

(D6)

Therefore the saddle-splay term does not contribute to planar structures even in the biaxial case.
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